top of page

Carbon Technology

Despite advances, traditional additive manufacturing still forces a trade-off between surface finish and mechanical properties. In contrast, Digital Light Synthesis—enabled by Carbon’s proprietary CLIP™ process—is a breakthrough technology using digital light projection, oxygen permeable optics, and programmable liquid resins to produce parts with excellent mechanical properties, resolution, and surface finish.

Collaborating
Partner Carbon
micro_traditional.jpeg

Traditional 3D Printing

3D printed parts are notoriously inconsistent. Their mechanical properties vary depending on the direction the parts were printed due to the layer-by-layer approach.

Digital Light Synthesis

Digital Light Synthesis™ produces consistent and predictable isotropic mechanical properties, creating parts that are solid on the inside like injection molded parts.

micro_clip.jpeg

BENEFITS

Isotropic parts with exceptional surface finish

Conventional 3D printed materials often exhibit variable strength and mechanical properties depending on the direction in which they were printed. Digital Light Synthesis™ parts behave consistently in all directions. The resolution and gentleness of our process — where parts aren’t harshly repositioned with every slice — make it possible to exploit a range of materials that have surface finish and detail needed for end–use parts.

Two-stage approach

Digital Light Synthesis technology is driven by Carbon’s groundbreaking CLIP™ process and programmable liquid resins. CLIP™—as reported in the most prestigious research journal, Science—uses digital light projection in combination with oxygen permeable optics. Traditional additive approaches to photo polymerization typically produce weak, brittle parts. Carbon overcomes this by embedding a second heat-activated programmable chemistry in our materials. This produces high-resolution parts with engineering-grade mechanical properties.

Light shapes the part

CLIP™ is a photochemical process that carefully balances light and oxygen to rapidly produce parts. It works by projecting light through an oxygen-permeable window into a reservoir of UV-curable resin. As a sequence of UV images are projected, the part solidifies and the build platform rises.

  1. BUILD PLATFORM

  2. RESIN

  3. OXYGEN PERMEABLE WINDOW

  4. DEAD ZONE

  5. LIGHT ENGINE

The dead zone

The heart of the CLIP™ process is the “dead zone” – a thin, liquid interface of uncured resin between the window and the printing part. Light passes through the dead zone, curing the resin above it to form a solid part. Resin flows beneath the curing part as the print progresses, maintaining the “continuous liquid interface” that powers CLIP™.

Heat sets the mechanical properties

Once a part is printed with CLIP™, it’s baked in a forced-circulation oven. Heat sets off a secondary chemical reaction that causes the materials to adapt and strengthen.

clip-desktop.jpg
bottom of page