Artificial Intelligence

Bringing AI to everyone

At Starckgate, we’re conducting research that advances the state-of-the-art in the field, applying AI to products and developing tools to ensure that everyone can access AI.

AI is making it easier for people to do things every day, whether it’s searching for photos of loved ones, breaking down language barriers, typing emails on the go, or getting things done. AI also provides new ways of looking at existing problems, from rethinking healthcare to advancing scientific discovery.

What is Artificial Intelligence

AI might be a hot topic but you'll still need to justify those projects.

Back in the 1950s, the fathers of the field Minsky and McCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task.

That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not.

AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity.

WHAT ARE THE DIFFERENT TYPES OF AI

At a very high level artificial intelligence can be split into two broad types: narrow AI and general AI.

Narrow AI is what we see all around us in computers today: intelligent systems that have been taught or learned how to carry out specific tasks without being explicitly programmed how to do so.

This type of machine intelligence is evident in the speech and language recognition of the Siri virtual assistant on the Apple iPhone, in the vision-recognition systems on self-driving cars, in the recommendation engines that suggest products you might like based on what you bought in the past. Unlike humans, these systems can only learn or be taught how to do specific tasks, which is why they are called narrow AI.

WHAT CAN NARROW AI DO

There are a vast number of emerging applications for narrow AI: interpreting video feeds from drones carrying out visual inspections of infrastructure such as oil pipelines, organizing personal and business calendars, responding to simple customer-service queries, co-ordinating with other intelligent systems to carry out tasks like booking a hotel at a suitable time and location, helping  radiologists to spot potential tumors in X-rays, flagging inappropriate content online, detecting wear and tear in elevators from data gathered by IoT devices, the list goes on and on.

WHAT CAN GENERAL AI DO

Artificial general intelligence is very different, and is the type of adaptable intellect found in humans, a flexible form of intelligence capable of learning how to carry out vastly different tasks, anything from haircutting to building spreadsheets, or to reason about a wide variety of topics based on its accumulated experience. This is the sort of AI more commonly seen in movies, the likes of HAL in  2001 or Skynet in The Terminator, but which doesn't exist today and AI experts are fiercely divided over how soon it will become a reality.

WHAT IS MACHINE LEARNING

There is a broad body of research in AI, much of which feeds into and complements each other.

Currently enjoying something of a resurgence, machine learning is where a computer system is fed large amounts of data, which it then uses to learn how to carry out a specific task, such as understanding speech or captioning a photograph.

WHAT ARE NEURAL NETWORKS

Key to the process of machine learning are neural networks. These are brain-inspired networks of interconnected layers of algorithms, called neurons, that feed data into each other, and which can be trained to carry out specific tasks by modifying the importance attributed to input data as it passes between the layers. During training of these neural networks, the weights attached to different inputs will continue to be varied until the output from the neural network is very close to what is desired, at which point the network will have 'learned' how to carry out a particular task.

A subset of machine learning is deep learning, where neural networks are expanded into sprawling networks with a huge number of layers that are trained using massive amounts of data. It is these deep neural networks that have fueled the current leap forward in the ability of computers to carry out task like speech recognition and computer vision.

Another area of AI research is evolutionary computation, which borrows from Darwin's famous theory of natural selection, and sees genetic algorithms undergo random mutations and combinations between generations in an attempt to evolve the optimal solution to a given problem. 

This approach has even been used to help design AI models, effectively using AI to help build AI. This use of evolutionary algorithms to optimize neural networks is called neuroevolution, and could have an important role to play in helping design efficient AI as the use of intelligent systems becomes more prevalent, particularly as demand for data scientists often outstrips supply. The technique was recently showcased on using genetic algorithms to train deep neural networks for reinforcement learning problems.

Finally there are expert systems, where computers are programmed with rules that allow them to take a series of decisions based on a large number of inputs, allowing that machine to mimic the behavior of a human expert in a specific domain. An example of these knowledge-based systems might be, for example, an autopilot system flying a plane.

 

WHAT IS FUELING THE RESURGENCE IN AI

The biggest breakthroughs for AI research in recent years have been in the field of machine learning, in particular within the field of deep learning.

This has been driven in part by the easy availability of data, but even more so by an explosion in parallel computing power in recent years, during which time the use of GPU clusters to train machine-learning systems has become more prevalent. 

Not only do these clusters offer vastly more powerful systems for training machine-learning models, but they are now widely available as cloud services over the internet. Over time we have moved to using specialized chips tailored to both running, and more recently training, machine-learning models. 

WHAT ARE THE ELEMENTS OF MACHINE LEARNING

As mentioned, machine learning is a subset of AI and is generally split into two main categories: supervised and unsupervised learning.

Supervised learning

A common technique for teaching AI systems is by training them using a very large number of labeled examples. These machine-learning systems are fed huge amounts of data, which has been annotated to highlight the features of interest. These might be photos labeled to indicate whether they contain a dog or written sentences that have footnotes to indicate whether the word 'bass' relates to music or a fish. Once trained, the system can then apply these labels can to new data, for example to a dog in a photo that's just been uploaded.

This process of teaching a machine by example is called supervised learning and the role of labeling these examples is commonly carried out by  online workers, employed through platforms

In the long run, having access to huge labelled datasets may also prove less important than access to large amounts of compute power.

In recent years, Generative Adversarial Networks ( GANs) have shown how machine-learning systems that are fed a small amount of labelled data can then generate huge amounts of fresh data to teach themselves.

This approach could lead to the rise of semi-supervised learning, where systems can learn how to carry out tasks using a far smaller amount of labelled data than is necessary for training systems using supervised learning today.

Unsupervised learning

In contrast, unsupervised learning uses a different approach, where algorithms try to identify patterns in data, looking for similarities that can be used to categorise that data.

An example might be clustering together fruits that weigh a similar amount or cars with a similar engine size.

The algorithm isn't setup in advance to pick out specific types of data, it simply looks for data that can be grouped by its similarities.

Reinforcement learning

A crude analogy for reinforcement learning is rewarding a pet with a treat when it performs a trick.

In reinforcement learning, the system attempts to maximize a reward based on its input data, basically going through a process of trial and error until it arrives at the best possible outcome.

Proudly created by Starckgate 

© 2020 by Starckgate

  • LinkedIn innovative Technol
  • Facebook Innovative Technology
  • Twitter Innovative Technology
  • Instagram Innovative Technology