In spring 2018, the surprising discovery of superconductivity in a new material set the scientific community abuzz. Built by layering one carbon sheet atop another and twisting the top one at a “magic” angle, the material enabled electrons to flow without resistance, a trait that could dramatically boost energy efficient power transmission and usher in a host of new technologies.
Now, new experiments conducted at Princeton give hints at how this material — known as magic-angle twisted graphene — gives rise to superconductivity. In this week’s issue of the journal Nature, Princeton researchers provide firm evidence that the superconducting behavior arises from strong interactions between electrons, yielding insights into the rules that electrons follow when superconductivity emerges.
“This is one of the hottest topics in physics,” said Ali Yazdani, who is the Class of 1909 Professor of and the senior author of the study. “This is a material that is incredibly simple, just two sheets of carbon that you stick one on top of the other, and it shows superconductivity.”
Exactly ho