Jul 12

Experiments show dramatic increase in solar cell output

0 comments

Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit.

 

 

 

 

 

In any conventional silicon-based solar cell, there is an absolute limit on overall efficiency, based partly on the fact that each photon of light can only knock loose a single electron, even if that photon carried twice the energy needed to do so. But now, researchers have demonstrated a method for getting high-energy photons striking silicon to kick out two electrons instead of one, opening the door for a new kind of solar cell with greater efficiency than was thought possible.

While conventional silicon cells have an absolute theoretical maximum efficiency of about 29.1 percent conversion of solar energy, the new approach, developed over the last several years by researchers at MIT and elsewhere, could bust through that limit, potentially adding several percentage points to that maximum output. The results are described today in the journal Nature, in a paper by graduate student Markus Einzinger, professor of chemistry Moungi Bawendi, professor of electrical engineering and computer science Marc Baldo, and eight others at MIT and at Princeton University.

The basic concept behind this new technology has been known for decades, and the first demonstration that the principle could work was carried out by some members of this team six years ago. But actually translating the method into a full, operational silicon solar cell took years of hard work, Baldo says.

That initial demonstration “was a good test platform” to show that the idea could work, explains Daniel Congreve PhD ’15, an alumnus now at the Rowland Institute at Harvard, who was the lead author in that prior report and is a co-author of the new paper. Now, with the new results, “we’ve done what we set out to do” in that project, he says.

The original study demonstrated the production of two electrons from one photon, but it did so in an organic photovoltaic cell, which is less efficient than a silicon solar cell. It turned out that transferring the two electrons from a top collecting layer made of tetracene into the silicon cell “was not straightforward,” Baldo says. Troy Van Voorhis, a professor of chemistry at MIT who was part of that original team, points out that the concept was first proposed back in the 1970s, and says wryly that turning that idea into a practical device “only took 40 years.”

The key to splitting the energy of one photon into two electrons lies in a class of materials that possess “excited states” called excitons, Baldo says: In these excitonic materials, “these packets of energy propagate around like the electrons in a circuit,” but with quite different properties than electrons. “You can use them to change energy — you can cut them in half, you can combine them.” In this case, they were going through a process called singlet exciton fission, which is how the light’s energy gets split into two separate, independently moving packets of energy. The material first absorbs a photon, forming an exciton that rapidly undergoes fission into two excited states, each with half the energy of the original state.

But the tricky part was then coupling that energy over into the silicon, a material that is not excitonic. This coupling had never been accomplished before.

As an intermediate step, the team tried coupling the energy from the excitonic layer into a material called quantum dots. “They’re still excitonic, but they’re inorganic,” Baldo says. “That worked; it worked like a charm,” he says. By understanding the mechanism taking place in that material, he says, “we had no reason to think that silicon wouldn’t work.”

What that work showed, Van Voorhis says, is that the key to these energy transfers lies in the very surface of the material, not in its bulk. “So it was clear that the surface chemistry on silicon was going to be important. That was what was going to determine what kinds of surface states there were.” That focus on the surface chemistry may have been what allowed this team to succeed where others had not, he suggests.

The key was in a thin intermediate layer. “It turns out this tiny, tiny strip of material at the interface between these two systems [the silicon solar cell and the tetracene layer with its excitonic properties] ended up defining everything. It’s why other researchers couldn’t get this process to work, and why we finally did.” It was Einzinger “who finally cracked that nut,” he says, by using a layer of a material called hafnium oxynitride.

The layer is only a few atoms thick, or just 8 angstroms (ten-billionths of a meter), but it acted as a “nice bridge” for the excited states, Baldo says. That finally made it possible for the single high-energy photons to trigger the release of two electrons inside the silicon cell. That produces a doubling of the amount of energy produced by a given amount of sunlight in the blue and green part of the spectrum. Overall, that could produce an increase in the power produced by the solar cell — from a theoretical maximum of 29.1 percent, up to a maximum of about 35 percent.

Actual silicon cells are not yet at their maximum, and neither is the new material, so more development needs to be done, but the crucial step of coupling the two materials efficiently has now been proven. “We still need to optimize the silicon cells for this process,” Baldo says. For one thing, with the new system those cells can be thinner than current versions. Work also needs to be done on stabilizing the materials for durability. Overall, commercial applications are probably still a few years off, the team says.

Other approaches to improving the efficiency of solar cells tend to involve adding another kind of cell, such as a perovskite layer, over the silicon. Baldo says “they’re building one cell on top of another. Fundamentally, we’re making one cell — we’re kind of turbocharging the silicon cell. We’re adding more current into the silicon, as opposed to making two cells.”

The researchers have measured one special property of hafnium oxynitride that helps it transfer the excitonic energy. “We know that hafnium oxynitride generates additional charge at the interface, which reduces losses by a process called electric field passivation. If we can establish better control over this phenomenon, efficiencies may climb even higher.” Einzinger says. So far, no other material they’ve tested can match its properties.

The research was supported as part of the MIT Center for Excitonics, funded by the U.S. Department of Energy.

New Posts
  • An updated analysis from OpenAI shows how dramatically the need for computational resources has increased to reach each new AI breakthrough. In 2018, OpenAI found that the amount of computational power used to train the largest AI models had doubled every 3.4 months since 2012. The San Francisco-based for-profit AI research lab has now added new data to its analysis. This shows how the post-2012 doubling compares to the historic doubling time since the beginning of the field. From 1959 to 2012, the amount of power required doubled every 2 years, following Moore’s Law. This means the doubling time today is more than seven times the previous rate. This dramatic increase in the resources needed underscores just how costly the field’s achievements have become. Keep in mind, the above graph shows a log scale. On a linear scale (below), you can more clearly see how compute usage has increased by 300,000-fold in the last seven years. The chart also notably does not include some of the most recent breakthroughs, including Google’s large-scale language model BERT, OpenAI’s large-scale language model GPT-2,  or DeepMind’s StarCraft II-playing model AlphaStar. In the past year, more and more researchers have sounded the alarm on the exploding costs of deep learning. In June, an analysis from researchers at the University of Massachusetts, Amherst, showed how these increasing computational costs directly translate into carbon emissions. In their paper, they also noted how the trend exacerbates the privatization of AI research because it undermines the ability for academic labs to compete with much more resource-rich private ones. In response to this growing concern, several industry groups have made recommendations. The Allen Institute for Artificial Intelligence, a nonprofit research firm in Seattle, has proposed that researchers always publish the financial and computational costs of training their models along with their performance results, for example. In its own blog, OpenAI suggested policymakers increase funding to academic researchers to bridge the resource gap between academic and industry labs
  • StarckGate is happy to work together with Asimov that will be aiming to radically advance humanity's ability to design living systems. They strive to enable biotechnologies with global benefit by combining synthetic biology and computer science. With their help we will able to grasp the following domains better Synthetic Biology Nature has evolved billions of useful molecular nanotechnology devices in the form of genes, across the tree of life. We catalog, refine, and remix these genetic components to engineer new biological systems. Computational Modeling Biology is complex, and genetic engineering unlocks an unbounded design space. Computational tools are critical to design and model complex biophysical systems and move synthetic biology beyond traditional brute force screening. Cellular Measurement Genome-scale, multi-omics measurement technologies provide deep views into the cell. These techniques permit pathway analysis at the scale of a whole cell, and inspection down at single-nucleotide resolution. Machine Learning We are developing machine learning algorithms that bridge large-scale datasets with mechanistic models of biology. Artificial intelligence can augment human capabilities to design and understand biological complexity.
  • The use of AI (artificial intelligence) in agriculture is not new and has been around for some time with technology spans a wide range of abilities—from that which discriminates between crop seedlings and weeds to greenhouse automation. Indeed, it is easy to think that this is new technology given the way that our culture has distanced so many facets of food production, keeping it far away from urban spaces and our everyday reality. Yet, as our planet reaps the negative repercussions of technological and industrial growth, we must wonder if there are ways that our collective cultures might be able to embrace AI’s use in food production which might include a social response to climate change. Similarly, we might consider if new technology might also be used to educate future generations as to the importance of responsible food production and consumption. While we know that AI can be a force for positive change where, for instance, failures in food growth can be detected and where crops can be analyzed in terms of disease, pests and soil health, we must wonder why food growth has been so divorced from our culture and social reality. In recent years, there has been great pushback within satellite communities and the many creations of villages focussed upon holistic methods of food production. Indeed, RegenVillages is one of many examples where vertical farming, aquaponics, aeroponics and permaculture are part of this community's everyday functioning. Moreover, across the UK are many ecovillages and communities seeking to bring back food production to the core of social life. Lammas is one such ecovillage which I visited seven years ago in Wales which has, as its core concept, the notion of a “collective of eco-smallholdings working together to create and sustain a culture of land-based self-reliance.” And there are thousands of such villagesacross the planet whereby communities are invested in working to reduce their carbon footprint while taking back control of their food production. Even Planet Impact’s reforestation programs are interesting because the links between healthy forests and food production are well known as are the benefits of forest gardening which is widely considered a quite resilient agroecosystem. COO & Founder of Planetimpact.com, Oscar Dalvit, reports that his company’s programs are designed to educate as much as to innovate: “With knowledge, we can fight climate change. Within the for-profit sector, we can win this battle.” Forest gardening is a concept that is not only part of the permaculture practice but is also an ancient tradition still alive and well in places like Kerala, India and Martin Crawford’s forest garden in southwest England where his Agroforestry Research Trust offers courses and serves as a model for such communities across the UK. But how can AI help to make sustainable and local farming practices over and above industrial agriculture? Indeed, one must wonder if it is possible for local communities to take control of their food production. So, how can AI and other new tech interfaces bring together communities and food production methods that might provide a sustainable hybrid model of traditional methods and innovative technology? We know already that the IoT (internet of things) is fast becoming that virtual space where AI is being implemented to include within the latest farming technology. And where businesses invested in robotics are likewise finding that there is no ethical implementation of food technology, we must be mindful of how strategies are implemented which incorporate the best of new tech with the best of old tech. Where AI is helping smaller farms to become more profitable, all sorts of digital interfaces are transmitting knowledge, education and the expansion of local farming methods. This means, for instance, that garden maintenance is continued by others within the community as some members are absent for reasons of vacation or illness. Together with AI, customer experience is as much a business model as it is a local community standard for communication and empowerment. The reality is that industrial farming need not take over local food production and there are myriad ways that communities can directly respond to climate change and the encroachment of big agriculture. The health benefits of local farming practices are already well known as are the many ways that smartphone technology can create high-yield farms within small urban spaces. It is high time that communities reclaim their space within urban centers and that urban dwellers consider their food purchasing and consumption habits while building future sustainability which allows everyone to participate in local food production. As media has recently focussed upon AI and industrial farming, we need to encourage that such technology is used to implement local solutionsthat are far more sustainable and realistic instead of pushing big agriculture.

Proudly created by Starckgate 

© 2020 by Starckgate

  • White Facebook Icon
  • White Twitter Icon
  • White Instagram Icon